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Abstract

Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and
play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often
than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm.
ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query
subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited
symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of
well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks
and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/
isma.
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Introduction

Over the last decade, network theory has come to play a central

role in our understanding of complex systems in fields as diverse as

molecular biology, sociology, economics, the internet, and others

[1]. The central question in all these fields is to understand

behavior at the level of the whole system from the topology of

interactions between its individual constituents. In this respect, the

existence of network motifs, small subgraph patterns which occur

more often in a network than expected by chance, has turned out

to be one of the defining properties of real-world complex

networks, in particular biological networks [2]. Network motifs act

as the fundamental information processing units in cellular

regulatory networks [3] and they form the building blocks of

larger functional modules (also known as network communities)

[4–6]. The discovery and analysis of network motifs crucially

depends on the ability to enumerate all instances of a given query

subgraph in a network or graph of interest, a classical problem in

pattern recognition [7], that is known to be NP complete [8].

Subgraph matching algorithms are usually classified as either

exact algorithms, which require a strict correspondence between

the query graph (i.e. the subgraph) and any match in the target

graph, or inexact algorithms, where some deformation of the

query graph is allowed when searching for a match [7]. Here we

are only concerned with exact algorithms. Some of the most well-

known algorithms that realize this are the algorithm of Ullmann

[9], the VF [10,11] and the VF2 algorithm [12,13]. The algorithm

of Ullmann uses the adjacency matrix representation of the

networks. A number of auxiliary matrices are defined to determine

the set of subgraph isomorphisms iteratively. In the VF algorithms,

on the other hand, the networks are represented by graphs. A state

space representation is used in which each state depicts a (partial)

mapping between nodes of both networks. The algorithm

recursively builds a network of states by adding to the present

states a pair of nodes that can be mapped on each other. After

computing a set of candidate pairs, for each pair it is checked

whether it meets the feasibility rules. Only then a new state is

created. The difference between the VF and the VF2 algorithm is

that the exploration of the search space has been improved in the

VF2 algorithm to reduce memory requirements. This means that

it is faster and can also be applied in larger graphs.

Most of the other exact algorithms typically find subgraph

isomorphisms in a database of graphs. To realize the subgraph

matching efficiently, a preprocessing step on this database is

introduced. Messmer and Bunke [14] proposed a method

consisting of building a decision tree from the database of graphs

by a form of indexing. This structure can then be used to find all

subgraph instances. This preprocessing step has been further

optimized by Weber et al. [15]. Another algorithm, the

GraphGrep algorithm [16], uses hash-based fingerprinting to

index the database of graphs. GIndex [17] makes use of frequent

substructures for its indexing. The GADDI algorithm [18] on the

other hand deals with larger graphs and uses an indexing based on

a neighborhood structure, similar to the TALE algorithm [19].

Another way to deal with exact subgraph matching is to

reformulate it as a constraint satisfaction problem and solving it
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with constraint programming, which is a good approach if there

are other constraints that need to be taken into account as well

[20,21].

Motivated by problems in biology, where it is necessary to find

subgraph instances in graphs with certain characteristics on the

links, which define the type of interaction between cellular

components (e.g. protein-protein, protein-DNA or protein phos-

phorylation, etc.) [6,22,23], we developed a novel exact subgraph

matching algorithm, which uses a search tree to find all instances

of a query subgraph in an edge-colored graph without using an

additional, usually time consuming, preprocessing step. The

algorithms that resemble our algorithm most are the algorithm

of Ullmann [9], the VF [10,11] and the VF2 algorithm [12,13].

Note that our problem differs from for example the SAGA

algorithm [24] in which the nodes instead of the edges contain

certain characteristics.

At the heart of our algorithm are custom designed data

structures (for both the network and the algorithm) which provide,

at each step in the subgraph matching procedure, rapid indexing

of the candidate nodes for inclusion in a subgraph instance. By

carefully selecting the order in which the motif nodes (denoted by

an index) are investigated, these sets of candidate nodes are kept as

small as possible. This allows to cut unfavorable branches in the

search tree as soon as possible and leads to a dramatic speedup

compared to existing algorithms. In this paper, we present a

formal description of the Index-based Subgraph Matching

Algorithm (ISMA), the data structures and how symmetries in

the query subgraph are dealt with. This paper is organized as

follows. After giving a general overview of the problem, together

with the definitions of the concepts that are used in this article, a

naive recursive algorithm is presented. The weaknesses of this

algorithm are then identified and an improved recursive ISMA

algorithm is proposed. As iterative algorithms may achieve a

performance gain and require less stack space and function call

overhead, an iterative version of the ISMA algorithm is presented,

for which a number of custom data structures were designed. We

also present comparisons to related subgraph matching algorithms

using a variety of biological and non-biological networks.

Methods

General description
In biological networks, the same set of nodes (typically genes or

proteins) can be connected in different ways, representing different

physical interaction mechanisms, which may be directed or not

[25]. In order to find matches for so-called composite motifs

(subgraph patterns with more than one interaction type [22,23]),

the ISMA algorithm is designed to find all occurrences of a given

query subgraph in graphs Gt with annotated edges. More

precisely, Gt~fV ,Eg with V the set of vertices (or nodes) and

E the set of edges (or links), where each link is represented by a

triplet (u,v,T) with u and v the start and end node respectively,

and T the type of the link. Hence, in contrast to ordinary graphs,

the links now also have a type, which identifies a number of

characteristics of the link such as whether it is directed or

undirected. It should be noted that parallel links are allowed in Gt

if and only if they are of a different type.

A motif or query subgraph M is defined as follows. It is a small

graph of k nodes with no (anti-)parallel links. This means that a

motif has at most K~
k(k{1)

2
links. The assumptions of no (anti-

)parallel links is not a strict condition and the research presented

here can easily be extended to motifs with (anti-)parallel links.

There are four possible configurations between two nodes n1 and

n2: no link, a directed link from n1 to n2, a directed link from n2 to

n1, or an undirected link between n1 and n2. The motif nodes (ni)

are ordered and can hence be referred to by a unique index i. In

the remainder of this article, this index will be used to refer to the

motif nodes themselves. Motifs are specified by a list of K link

Figure 1. The motif adjacency Matrix. In this article, motifs are
denoted by a motif specification which can be deduced from its
adjacency matrix as indicated by the red arrow.
doi:10.1371/journal.pone.0061183.g001

Figure 2. Examples of motifs and their specifications. Here
nodes are denoted by their index. Look at for example the motif
AAAB000B0A00BAA. Its motif specification can be deduced as follows: a
directed link of type A from node 1 to node 2, a directed link of type A
from node 1 to node 3, a directed link of type A from node 2 to node 3,
a directed link of type B from node 1 to node 4, no link between node 2
and node 4, no link between node 3 and node 4, no link between node
1 and node 5, a directed link of type B from node 2 to node 5, no link
between node 3 and node 5, a directed link of type A from node 4 to
node 5, no link between node 1 and node 6, no link between node 2
and node 6, a directed link of type B from node 3 to node 6, a directed
link of type A from node 4 to node 6, a directed link of type A from
node 5 to node 6.
doi:10.1371/journal.pone.0061183.g002

The Index-Based Subgraph Matching Algorithm (ISMA)
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types as follows:

½T(1,2),T(1,3),T(2,3),T(1,4),T(2,4), . . . ,T(k{1,k)�

with T(i,j) the link type between the i-th and the j-th node of the

motif. It is defined that if no link exists between two nodes in a

motif the corresponding link type is set to null (or ‘0’). This motif

specification can easily be deduced from the adjacency matrix of

the graph as indicated in figure 1.

Link types may be specified by upper case characters (A, B, etc.).

In the case the links are directed, the reverse of a link can be

represented by the corresponding lower case character. A number

of examples of motifs and their specification are given in figure 2.

The naive recursive subgraph matching algorithm
(RSMA)

In this section, a naive recursive subgraph matching algorithm is

described which is implemented in a motif clustering software tool

(Cyclus 3D) [26]. We describe this algorithm in detail here, as it

will form the basis for the ISMA algorithm. It is a depth first tree

search procedure in which the motif nodes are investigated in the

order in which they are listed in the specification. This means that

the algorithm will first map a network node on the first motif node,

then on the second motif node, and so on.

It should be noted that this algorithm resembles the VF2

algorithm. However, it is not completely similar. In the VF2

algorithms first a set of candidate pairs (i.e. a network node and a

motif node on which this network node can be mapped) is

calculated and subsequently this set is filtered according to the

feasibility rules. One of these rules, for example, checks whether

the links have the correct attributes (i.e. link types). By a careful

design of the network data structure in the ISMA algorithm all

candidate nodes are feasible nodes, which means that no

additional checking operation is needed.

The pseudocode of the recursive subgraph matching algorithm

(RSMA) is given below. The algorithm (i.e. the function

findMotifs) takes 3 input parameters: a motif specification mspec,

the motif instance instance that tracks which network nodes have

been mapped on the motif nodes, and the network Gt. In each

recursive call, it is first checked whether the instance is complete,

i.e. whether all motif nodes (mn) have network nodes (nn) mapped

on them. If this is the case, the motif instance is exported.

Otherwise, the next motif node (specified by its index) to be

investigated is identified by the function next(). Here, next() returns

the smallest index that has not been investigated yet. Subsequent-

ly, a set is determined of all network nodes that can be mapped on

this motif node. This set contains all network nodes that are

connected to the network nodes that were already mapped in the

instance by links of the correct type (according to the motif

specification). For the first motif node, this set simply consists of all

nodes of the network Gt. One by one, the network nodes in this set

are mapped onto the motif node, after which the findMotifs

routine is called recursively. This way, all instances in Gt

corresponding to the motif specification are enumerated.

Recursive subgraph matching algorithm
1 findMotifs(mspec, instance, Gt){

2 if(instance is complete){

3 export(instance);

4 return;

5 }

6 mn = next();

7 set = determineSet(instance, mn, Gt);

8 forall(nodes nn in set){

9 instance.put(mn, nn);

10 findMotifs(mspec, instance, Gt);

11 previous();

12 instance.remove(nn);

13 }

14 }

15

16 i = 0;

17 next(){

18 return i++;

19 }

20

21 previous(){

22 i–;

23 }

24

25 determineSet(instance, mn, Gt){

26 if(index = = 1){

27 return V;

28 }else{

29 sets = EMPTY;

30 forall(nodes ni in instance){

31 motifIndex = instance.getIndex(ni);

32 linkType = mspec.getLinkType(motifIndex, mn);

33 set = ni.getNeighborsofType(linkType);

34 sets.add(set);

35 }

36 return intersection(sets);

37 }

38 }

The RMSA algorithm has some efficiency issues. When the set

of candidate network nodes is determined for the first motif node,

the complete set of network nodes is returned (line 22). It is

possible that a lot of these network nodes don’t even have the

correct links (according to the motif specification) departing from

them and thus are bad candidates to be mapped on the first motif

Figure 3. Example motif and network. The motif (left) which is
searched for in the example network (right). Links of type A or B are
directed; links of type C are undirected.
doi:10.1371/journal.pone.0061183.g003

Table 1. The initialization phase.

link type {nn} # nn link type {nn} # nn

A {1,2,5} 3 a {1,5,6} 3

B {1,2,4,5} 4 b {2,3,4} 3

C {2,3,4,5,6} 5

For each link type the set of network nodes is depicted together with its
cardinality.
doi:10.1371/journal.pone.0061183.t001

The Index-Based Subgraph Matching Algorithm (ISMA)
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node. This means that the search tree is very broad near the root.

It would be better to narrow this down and determine a set of good

candidate nodes by checking the types of the links that are

departing from the network nodes and only select those nodes that

have links of the same type as the links from the first motif node.

Moreover, this set of candidate nodes can be further reduced by

selecting another motif node to be investigated first. By changing

the order in which the motif nodes are investigated (in the next()-

function), the sets of candidate network nodes can be kept as small

as possible. Smaller sets lead to less branches in the search tree and

thus faster calculation times.

Operation of the ISMA algorithm: an example
In this section, we will sketch the operation of the index-based

subgraph matching algorithm by means of an example. In the

three following sections, the algorithm is described in full detail.

Suppose we want to find all occurrences of the motif ABC (with

link types A and B directed, and link type C undirected) in the

network depicted in figure 3. In the initialization phase, the best

motif node to be investigated first is determined. As we want to

narrow down the search tree, this should be the motif node with

the least number of possible network nodes that can be mapped on

it. These network nodes are the nodes that have the same types of

outgoing links as the motif node. The set of possible network nodes

for each motif node can then be determined by calculating the

intersection of the sets of start network nodes of the corresponding

link types. As calculating these intersections can be quite time-

consuming, we opted to calculate the number of start nodes for

each link type of the motif and select the motif node from which a

link departs of the type with the lowest number of start nodes. This

is shown in table 1. In practice, these sets of network (start) nodes

are retrieved in constant time since they are stored in the data

structure of the network itself (see section on data structures). It

should be noted that if some of the links are directed, the

occurrences of the reverse links should also be taken into account.

In our example, this means that the sets of starting network nodes

from the link types a and b also need to be determined. The link

type with the lowest cardinality of its corresponding set determines

the first motif node, namely the motif node from which a link of

this type departs.

If there are multiple link types with the same cardinality, there

are two possibilities: randomly picking one of these link types or

actually calculating the sets of possible network nodes that can be

mapped on the motif nodes. Here, we will apply the latter and

calculate for the concerned motif nodes the intersection of the sets

of starting network nodes of the links of which the types are

specified in the motif. In our example, we encounter the same

cardinality for the link types A, a and b, which correspond to motif

nodes 1 (for A), 2 (for a) and 3 (for b). For the motif node 1, the set

of possible network nodes is the intersection of the start sets of link

type A ({1,2,5}) and link type B ({1,2,4,5}), thus set {1,2,5}.

Similarly, for motif node 2 (link types a and C) and motif node 3

(link types b and C) this results in {5,6} and {2,3,4} respectively.

From this we can conclude that motif node 2 is the best option to

be investigated first as its set of candidate network nodes only has 2

elements, namely network nodes 5 and 6.

We will map one of these nodes, network node 5, on motif node

2. Now it needs to be determined which of the 2 remaining motif

nodes (1 or 3) is the best option to be investigated next. To do this,

we determine the cardinality of the sets of network nodes that are

neighbors of network node 5 according to the correct link types in

order to be mapped on the specific motif nodes. For motif node 1

(connected to motif node 2 with link type a) this set of network

nodes is {1,2}, while for motif node 3 (connected to motif node 2

with link type C) this set is {4}. As there is only one network node

that can be mapped on motif node 3, we will consider this motif

node to be investigated next.

Network node 4 is mapped on motif node 3. Now, we need to

determine which network nodes can be mapped on the last motif

node, namely node 1. This is the intersection of the set of

neighbors of network node 5 according to link type a ({1,2}) and

the set of neighboring network nodes of node 4 according to link

type b ({1}). This results in singleton {1}. We now have a

complete instance that can be exported.

As there are no other network nodes that can be mapped on

motif node 1 (all nodes of the set {1} have been mapped), and no

other network nodes can be mapped on motif node 3 (all nodes of

the set {4} have been mapped), we will map the next network

node on motif node 2, namely node 6 (from the set {5,6}

determined at initialization). Again, it will be determined which of

the remaining motif nodes (1 or 3) will be investigated first. For

motif node 1, the set of possible network nodes (neighbors of

network node 6 according to link type a) is {5}. For motif node 3

(connected to motif node 2 with link type C) this set is {2,3}. Now

motif node 1 is the best option to be investigated first as there is

only one network node that can be mapped on it. Network node 5

is mapped on motif node 1. To determine which network nodes

can be mapped on the last motif node 3, the intersection is

calculated between the set of neighbors of network node 6

according to link type C ({2,3}) and the set of neighbors of

network node 5 according to link type B ({3}). This results in the

Figure 4. Search tree. The search tree of the ISMA algorithm (left) and the standard recursive algorithm (right) applied to the example network. A
search tree indicates which network nodes have been mapped on the motif nodes.
doi:10.1371/journal.pone.0061183.g004

The Index-Based Subgraph Matching Algorithm (ISMA)
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singleton {3}. Network node 3 is mapped om motif node 3 and the

complete instance can be exported.

There are no more network nodes that can be mapped on motif

node 3 (all nodes of the set {3} have been mapped), and no more

network nodes that can be mapped on motif node 1 (all nodes of

the set {5} have been mapped). Moreover, we iterated over all

network nodes that can be mapped on motif node 2 (all nodes of

the set {5,6} have been mapped). This means that the algorithm

can terminate and has found all instances of the motif ABC in the

network. Two motif instances have been found, one with the

network nodes 1, 5 and 4 mapped on motif nodes 1, 2 and 3

respectively, and one with the network nodes 5, 6 and 3.

Similar to the naive recursive algorithm, this algorithm is also a

depth-first search algorithm. When m motif nodes have network

nodes mapped on them, first all possibilities for the remaining

k{m nodes (assuming the motif has k nodes) will be checked,

before mapping the next network node on the m-th motif node. As

mentioned before, in this algorithm motif nodes are not always

investigated in the same order. In the above example, in both

instances motif node 2 was investigated first, but for the first

instance motif node 3 was the next to be investigated, while for the

second instance this was motif node 1. By carefully selecting the

order in which the motif nodes are investigated, the sets of network

nodes that can be mapped on the motif nodes are kept as small as

possible, reducing the number of branches in the search tree.

The search trees of both the RSMA and the ISMA algorithm

are depicted in figure 4. It can be seen that the ISMA algorithm

indeed has a significantly smaller search tree, namely 6 nodes

instead of 12.

The recursive index-based subgraph matching algorithm
Below, the pseudo code of the recursive index-based subgraph

matching algorithm is presented. One can see that the main

algorithm (i.e. the findMotifs-function) is similar to the one of the

naive recursive algorithm. The determineSet-function only differs

in the case in which no network nodes have been mapped on the

motif nodes yet. Instead of returning the complete set of network

nodes, now a set of good candidate network nodes for this motif

node is returned. These are the networks nodes that have the same

links (or more accurately link types) departing from them as the

specific motif node.

The next-function returns the best motif node to be investigated

next. This is the motif node that has the smallest set of candidate

network nodes, as this leads to a smaller search tree. In the case the

motif instance is empty (i.e. no network nodes have been mapped

on the motif nodes), we will determine for each link type the

number of networks links of this type. The link type with the lowest

cardinality determines the best motif node. As stated in the

previous section, when multiple link types have the same

cardinality (i.e. the boolean variable multiple is true), there are

two options: randomly selecting one of these link types or

calculating the sets of possible network nodes that can be mapped

on the motif nodes. The code depicts the latter one. For each motif

node the set of candidate network nodes is determined. These are

the network nodes with the same outgoing link types as the motif

node. The motif node with the smallest set of candidate nodes is

the best option to be investigated first. In the case where some of

the motif nodes have network nodes mapped on them, we will

determine for each of the unmapped motif nodes the number of

neighbors of the mapped network nodes that can be mapped on

this motif node. The minimum number then determines which

motif node will be investigated next. By always selecting the motif

node with the smallest set of candidate network nodes, the number

of branches in the search tree is kept as small as possible, leading to

faster calculations.

Recursive ISMA algorithm
1 findMotifs(mspec, instance, Gt){

2 if(instance is complete){

3 export(instance);

Figure 5. Data Structures. (a) The checklist. In the ISMA algorithm,
the circles represent motif nodes (b) The motif iterator. (c) The priority
queue map. (d) The priority object. It is assumed that the motif has k
nodes.
doi:10.1371/journal.pone.0061183.g005

Figure 6. Example of data structures. We are looking for a 4-node
motif. In the motif instance (a) network node 9 is mapped on motif
node 2 and network node 5 is mapped on motif node 4. These motif
nodes were added (in the correct order) to the chosen list of the
checklist (b), while the other two motif nodes (1 and 3) remain in the
rest set. The motif iterator (c) contains two iterators that are of
importance, namely the ones for the motif nodes of the chosen list.
These iterate over the possible network nodes that can be mapped on
the motif nodes. The priorityqueuemap (d) only contains valuable
priority queues for the motif nodes 1 and 3. Each priority queue
contains a priorityobject for each network node that is already mapped
in the instance.
doi:10.1371/journal.pone.0061183.g006

The Index-Based Subgraph Matching Algorithm (ISMA)
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4 return;

5 }

6 mn = next(instance, mspec);

7 set = determineSet(instance, mn, Gt, mspec);

8 forall(nodes nn in set){

9 instance.put(mn, nn);

10 findMotifs(mspec, instance, Gt);

11 instance.remove(nn);

12 }

13 }

14

15 next(instance, mspec){

16 min = LARGE NUMBER;

17 if(instance is empty){

18 multiple = FALSE;

19 linkTypes = mspec.getLinkTypes();

20 forall(types t in linkTypes){

21 #NBS = #fGt.getStartNodesofType(t)};

22 if(#NBS,min){

23 min = #NBS;

24 i = t.getStartNode();

25 multiple = FALSE;

26 }else if(#NBS = = min){

27 multiple = TRUE;

28 }

29 }

30 if(multiple){

31 forall(motif nodes mn){

32 #NBS = #fdetermineSet(instance, mn, Gt,

mspec)};

33 if(#NBS,min){

34 min = #NBS;

35 i = mn;

36 }

37 }

38 }

39 }else{

40 forall(unmapped motif nodes mn){

41 forall(mapped network nodes nn){

42 #NBS = number of neighbors of nn that can be

mapped on mn;

43 if(#NBS,min){

44 min = #NBS;

45 i = mn;

46 }

47 }

48 }

49 }

50 return i;

51 }

52

53 determineSet(instance, mn, Gt, mspec){

54 if(instance is empty){

55 linkTypes = mspec.getLinkTypesFrom(mn);

56 forall(types t in linkTypes){

57 set = Gt.getStartNodesofType(t);

58 sets.add(set);

59 }

60 return intersection(sets);

61 }else{

62 sets = EMPTY;

63 forall(nodes ni in instance){

64 motifIndex = instance.getIndex(ni);

65 linkType = mspec.getLinkType(motifIndex, mn);

66 set = ni.getNeighborsofType(linkType);

67 sets.add(set);

68 }

69 return intersection(sets);

70 }

71 }

Data structures
As shown in the example and the recursive ISMA algorithm, the

execution time of the recursive algorithm can be reduced by an

intelligent choice of the order in which the nodes of a motif are

investigated. This way, unfavorable branches of the search tree are

pruned as soon as possible. Moreover, by an intelligent design of

the network data structure an additional speedup can be realized

for both the RSMA and the ISMA algorithm.

This section starts with an overview of the optimizations to the

network data structure which enable fast retrieval of the network

nodes adjacent to links of a certain type. Subsequently, a number

of data structures (see figure 5) are presented in order to realize an

iterative version of the ISMA algorithm (which is more efficient

and requires less stack space). The checklist keeps track of the

order in which the motif nodes are investigated. A motif iterator is

a collection of iterators that iterate over the possible network nodes

for each of the motif nodes. The priority queue map is used in the

algorithm to determine which of the motif nodes is the most

lucrative to be investigated next. Investigating a motif node here

means determining a set of network nodes that can be mapped on

it, and adding each of these nodes to the instance one after the

other.

To better understand the algorithm specific data structures,

figure 6 presents an example in which the possible content of the

data structures is given for one instant during the execution of the

algorithm.

Optimizations to the network data structure. The

network data structure contains a network (i.e. graph). The main

structure consists of a list of nodes. Each of these nodes has a list of

neighbors, together with the links connecting them. The data

structure has been optimized for two specific operations in the

ISMA algorithm: the retrieval of the start nodes of all links of a

specific type and the retrieval of all neighbors of a node that are

connected to that node with a link of a specific type. This has been

accomplished by 2 changes:

N In the network structure a map is added with the link type as

key and the set of the start nodes of all links of this link type as

value. As the number of link types in a network is relatively

small, finding the start nodes of all links of a specific type now

only requires a small amount of execution time.

N However, this structure requires some additional memory. In a

map, for each link type a set of reference to nodes (i.e. start

nodes of links of this type) is stored. Assuming that the network

has DED links and that there are DT D link types, this means that

the additional memory needed is equal to (DEDzDT D) references

plus the memory overhead of one map and DT D sets.

N For every node a map is kept with the link types as keys and

the sets of all neighbors according to this link types as values.

This speeds up the operation of finding all neighbors that are

connected with a link of a specific type.

N As in ‘non-optimized’ networks nodes also contain references

to their neighbors, this structure only needs a small amount of

additional memory, namely DT D references to the link types plus

the memory overhead of one map and DT D sets.

The Index-Based Subgraph Matching Algorithm (ISMA)
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Checklist. A checklist (CL) is a data structure that keeps track

of the order in which elements (motif nodes) are chosen from a

collection. It contains an ordered list of the chosen elements,

together with the set of all elements that have not been chosen yet.

It should be noted that in the recursive algorithm, this information

is kept in the stack. The check list data structure is illustrated in

figure 5a.

In the example (see figure 6b) first motif node 2 was removed

from the rest set and added to the chosen list. Subsequently motif

node 4 was removed from the rest set and added to the chosen list.

Two nodes (1 and 3) remain in the rest set.

Following functions are defined on an checklist:

N numberChecked(): returns the number of chosen elements

N lastChecked(): returns the last element that has been chosen

N check(element): removes element from the rest-set and adds it

to the list of chosen elements

N uncheck(): removes the last element from the chosen-list and

adds it to the rest-set

N checked(): returns the list of checked (i.e. chosen) elements

N rest(): returns the rest-set

Motif iterator. The motif iterator (MI) contains an iterator

for each of the motif nodes that iterates over the possible network

nodes that can be mapped on this motif node. Additionally, in

order to know the order in which the motif nodes have been

investigated, it contains a pointer to a checklist. When a motif

node has not been investigated yet, the corresponding iterator is

set to null. This data structure is depicted graphically in figure 5b.

Whereas for the ‘first’ motif node the iterator stays the same

during the complete execution of the algorithm, the iterators for

the other motif nodes will change. Every time a motif node is

determined as the best to be investigated next, a new iterator (that

iterates over the set of possible network nodes that can be mapped

on this motif node) is added to the motif iterator. The motif

iterator will always first iterate over the set of nodes that can be

mapped on the motif node that was last checked in the check list.

Once it has iterated over all these network nodes, it will iterate

further on the set of network nodes that can be mapped on the

previous motif node according to the checklist. This explains the

need of the checklist.

In the example the motif iterator (figure 6c) has an iterator over

the set (of network nodes) {2, 10, 9, 7} for motif node 2 and an

iterator over the set {12, 5, 3} for motif node 4. The other iterators

are of no importance at this stage in the algorithm. At this moment

network node 9 is mapped on motif node 2, which means that

network nodes 2 and 10 were already mapped on motif node 2.

Similarly network node 5 is mapped on motif node 4 meaning that

network node 12 was already mapped on this motif node. When

the algorithm continues, after finding network nodes that can be

mapped on motif nodes 1 and 3, network node 3 will be mapped

on motif node 3. When this iterator finishes, it is removed from the

motif iterator and the search continues by mapping network node

7 on motif node 2.

Following functions are defined on an index iterator:

N put(motifnode, iterator): adds the iterator to the corresponding

motifnode

N hasNext(): returns a boolean value indicating if any of the

iterators has a next element. It will first check the iterator of

the checklist.lastChecked(). If it is empty, it will check the

iterator of the previous motif node. And so on.

N next(): returns the next element of the index iterator. This is

the next element of the current motif node in the index list

Priorityqueuemap. The priorityqueuemap (PQM) is an

instrument to determine the best possible motif node to be

investigated next. It contains a priority queue for each motif node.

Moreover, in order to know which of the motif nodes have not

been investigated yet, a pointer to the checklist object is kept. This

data structure is illustrated in figure 5c. It is similar to the motif

iterator, but the iterators are substituted by priority queues (PQ).

In order to keep the search tree as small as possible, we want to

select the (uninvestigated) motif node with the smallest set of

possible network nodes that can be mapped on it. This set is the

intersection of all the neighbor sets (a neighbor set is the set of all

the network nodes that are connected to a mapped network node

according to a specific link type) of nodes that can be mapped on

this motif node. Since calculating this intersection can be time-

consuming and the maximum cardinality of this intersection is the

cardinality of the smallest of these neighbor sets, in the priority

queues we will keep track of how many neighbors each mapped

network node has according to the types of each of its outgoing

links (according to the motif specification). By only taking into

account the (cardinality of the) sets of neighbors of the mapped

network nodes and not the intersection of these sets for one motif

node, we do not produce the optimal (i.e. the smallest) search tree,

but it is a good compromise between efficiency (calculating the

intersection is time-consuming) and optimality.

The objects that are stored in the priority queues were designed

specifically for the ISMA algorithm. We opted to name them

priority objects (PO) (see figure 5d). Priority objects consist of 4

fields: a network node, a motif start node, a motif end node and

the number of neighbors of the network node according to the

type of the link between the motif start node and end node. The

network node is the node of the current instance that has been

mapped on the motif start node. A priority object contains 2 motif

nodes, a start and an end node, from which the link type can be

deduced. It should be noted that for one priority queue all the

‘motif end node’ fields are equal, and thus could be omitted. To

determine the next best motif node, for each of the priority queues

of the motif nodes that have not been chosen yet the minimum

number of possible neighbors is retrieved. The overall minimum

determines which motif node will be chosen next, as the maximum

cardinality of the set of possible network nodes is minimal for this

motif node.

In the example (see figure 6d) priority objects are indicated by a

list of 4 elements ([network node, motif start node, motif end node,

number of neighbors]). Here only the priority queues of motif

node 1 and 3 are of importance. Each priority queue contains 2

priority object, one for each of the mapped network nodes. Motif

node 3 would be selected as the best motif node to be investigated

next, since network node 5 has the least number of neighbors that

can be mapped on it.

The following functions are defined on a priorityqueuemap:

N add(priorityqueueObject): adds the priorityqueueObject to the

correct priority queue according to its motif end node

N poll(): removes and returns the overall best element (i.e.

priority object) of the priority queues

The index-based subgraph matching algorithm (ISMA)
As mentioned previously, the recursive ISMA algorithm

outperforms the naive recursive algorithm by always selecting

the motif node with the smallest set of possible network nodes that

The Index-Based Subgraph Matching Algorithm (ISMA)
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can be mapped on it. In this way, the number of branches in the

search tree is minimized.

Moreover, iterative algorithms can improve the performance

and consume less stack space and function call overhead. In the

previous section a number of data structures were presented in

order to realize an iterative version of the ISMA algorithm. In this

section the actual algorithm is discussed.

The pseudo code of the iterative ISMA algorithm is given

below.

Index-based Subgraph Matching Algorithm (ISMA)
1 findMotifs(mspec, Gt){

2 instance = EMPTY INSTANCE;

3 mn = determineFirstMotifNode();

4 CL.check(mn);

5 {startsetg = determineSet(instance, mn, Gt, mspec);

6 MI.put(mn, startset.iterator());

7

8 while(MI.hasNext()){

9 nn = MI.next();

10 backtrack();

11 instance.putNode(CL.lastChecked(), nn);

12 if(instance is complete){

13 export(instance);

14 continue on line 8;

15 }

16 forall(i in CL.rest()){

17 PQM.add(new PO(nn, CL.lastChecked(), i,

#NBS));

18 }

19 mn = PQM.poll().getEndNode();

20 CL.check(mn);

21 set = determineSet(instance, mn, Gt);

22 MI.put(mn, set.iterator());

23 }

24 }

In the initialization phase (line 2–6) we will stipulate which of

the motif nodes is best suited to be handled first (line 3). To

determine this, for each link type present in the motif the number

of occurrences in the network is counted. The start (motif) node of

the link of the type with the least instances in the network is chosen

to be the first motif node. If multiple motif nodes have an outgoing

link of this type or multiple link types have the same number of

instances, there are two options. One could randomly select one of

these link types to determine the first motif node fast, but at the

risk of creating a unnecessary branches in the search tree. The

other option is to calculate the actual sets of candidate network

nodes for these motif nodes by intersecting the sets for each of the

link types departing from this motif node. Then the motif node

with the smallest set of candidate network nodes is selected. This

comes down to calculating the following intersection value (IV) for

all motif nodes mn from which links of the specific types depart:

IV (mn)~#IS(mn)~#f
\

jDj[M,j=mn

fkD(k,l,type(mn,j))[Egg

This is in fact the cardinality of the intersection (IS) of all sets of

network start nodes of the links of the types that depart from mn.

For mn all types of the links departing from it are determined. For

each of these link types the set of starting nodes in the network is

collected and the cardinality of the intersection of all these sets is

Figure 7. Examples of reflection and cyclic rotation symme-
tries. The motif on the left has a reflection symmetry between nodes 2
and 3. The motif on the right has a cyclic rotation symmetry between
the three nodes.
doi:10.1371/journal.pone.0061183.g007

Figure 8. Reflection symmetry. Enumeration of all possibilities to
map 5 network nodes on 2 reflection symmetric motif nodes. The
squares represent motif nodes, the circles represent network nodes.
Once a network node has been mapped on a motif node that is part of
a reflection symmetry, it will never be mapped on one of the other
nodes of the symmetry.
doi:10.1371/journal.pone.0061183.g008

Figure 9. Cyclic rotation symmetry. Enumeration of all possibilities
to map 5 network nodes on 3 motif nodes that are part of a cyclic
rotation. The squares represent motif nodes, the circles represent
network nodes. Once a network node is mapped on the ‘first’ motif of
the symmetry, it will never be mapped on the other nodes of the
symmetry. For the other motif nodes of the symmetry, all possibilities
still need to be explored.
doi:10.1371/journal.pone.0061183.g009
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calculated. The minimal value (for the different motif nodes) of this

parameter then determines which motif node will be handled first.

The determination of the first motif node is heuristic in the sense

that we want to find a good first motif node as soon as possible,

while we cannot guarantee that the search tree we build is indeed

the smallest one possible. Once it is known which motif node is the

first to be investigated, a start set of network nodes is calculated

(line 5). It consists of all network nodes that can be mapped onto

this motif node. It should be noted that the determineSet-function

is identical to the one used in the recursive ISMA algorithm. The

chosen motif node is checked in the checklist (line 4), and an

iterator over the determined start set is added to the motif iterator

(line 6).

The main part of the algorithm executes the following as long as

there are network nodes in the motif iterator (line 8). It retrieves

the next network node from the motif iterator, and adds it to the

instance on the position of the last checked motif node (line 9 and

11). If the instance is complete (i.e. all motif nodes have network

nodes mapped on them), it is exported and the algorithm

continues by retrieving the following network node from the motif

iterator (line 12–15). If this is not the case, for all the motif nodes

that have not been handled yet it is determined how many

neighbors of this network node can be mapped on them and the

results are added, in the form of a priority object, to the

priorityqueuemap (line 16–18). Subsequently, the next best motif

node is determined by retrieving the best priority object from the

priorityqueuemap (line 19). This motif node is checked in the

checklist, and an iterator over a set of network nodes is added to

the motif iterator (line 20–22). This set is the result of the function

determineSet that is identical to the one used in the recursive

ISMA algorithm. For a complete description of this function we

would like to refer to the section of the recursive algorithm.

The algorithm terminates when there are no more network

nodes left in the motif iterator. This means that there are no more

network nodes that are good candidates to be mapped on the motif

nodes. All motif instances have thus been found.

It should be noted that, when the next motif node is retrieved

from the motif iterator (line 9), the data structures are updated to

allow backtracking. This is indicated by the backtrack-procedure

(line 10). There are three possible situations. When a new iterator

was added in the previous iteration, no updates are needed, and

the algorithm can continue. If the motif iterator retrieves a motif

node from the same iterator as in the previous iteration, both the

motif instance and the priorityqueuemap need to be updated. The

network node that was mapped in the previous iteration needs to

be removed from the instance, so that a new network node can be

mapped. Moreover, all priority objects that are associated with this

previous network node need to be removed from the priority-

queuemap. If, on the other hand, the network node that is

returned comes from an iterator that is associated with a motif

node that was handled previously, all data structures are updated.

In the checklist the motif nodes that have been investigated

completely (i.e. the algorithm has iterated through all network

nodes that can be mapped on them in the current situation) need

to be unchecked. In the priorityqueuemap all priority objects that

have these motif nodes as start node are removed. Moreover, all

network nodes that are mapped on motif nodes of the rest-set of

the checklist are removed from the instance, as well as the network

node that is mapped on the current motif node (i.e. lastChecked()).

The priority object associated with this last network node are also

removed from the priorityqueumap.

Dealing with symmetry
In this section it will be explained how the ISMA algorithm can

be further optimized when dealing with symmetric motifs. A motif

is called to be symmetric if it is identical to a motif from which the

nodes are permutated in a certain way. The most common

symmetries in motifs are reflections, rotations, translations and

combinations of these three. By making use of the symmetry

characteristics of a motif, the search tree of the (iterative) ISMA

algorithm can be pruned further. Once a network node has been

mapped on a motif node that takes part in a symmetric

permutation, it should not be mapped again on the other nodes

of this symmetry if this would lead to the same motif instance. In

this paper, we will focus on two kind of symmetries, namely

reflections (or mirror symmetry) and cyclic rotations, as these can

easily be exploited to speed up the calculations. In the future, we

plan to take into account all sorts of symmetries (like the algorithm

of [27] does). At this time, for all other symmetries, duplicate

instances will be eliminated once they have been found.

A motif contains a reflection symmetry if and only if two or

more nodes can be swapped without changing the motif’s

configuration. For example, the motif AAX in figure 7 has a

reflection symmetry between node 2 and node 3. A cyclic rotation

symmetry is a symmetry in which nodes can be moved in circles.

An example of a motif with this type of symmetry is AaA (figure 7)

where the motif with nodes ½1,2,3� is equal to the motif with nodes

½2,3,1� and the one with nodes ½3,1,2�.
The idea behind ‘dealing with symmetry’ is that once we have

mapped one network node on a motif node that is part of a

symmetry, we do not want it mapped again on another motif node

of the symmetry. Suppose that we have a reflection symmetry with

s motif nodes and that there are t network nodes that can be

mapped on them, then mapping the network nodes on these

symmetric motif nodes comes down to choosing s distinct elements

out of a set of t elements, not taking into account the order of the

elements, which is in fact a combination of s elements out of a set

of t elements. One way to enumerate all these combinations is by

first summing up all sets with the first element, then all sets with

the second element that have not been encountered yet, etc. This

is illustrated in figure 8. From this, it can be seen that, once one

network node is mapped on a symmetric motif node (in the figure

the first motif node), it will never be mapped again on one of the

other symmetric motif nodes that are investigated thereafter.

For cyclic rotation symmetries this is slightly different. Here one

motif node needs to be chosen as the ‘first’ node of the rotation

and the idea is that once a network node is mapped on this ‘first’

node, it cannot be mapped on one of the other motif nodes in the

symmetry, while a network node that is mapped on the ‘second’

(or higher) motif node still could be mapped on the other nodes of

the symmetry. This is illustrated in figure 9 where all possibilities

are given to map 5 network nodes on 3 motif nodes that form a

cyclic rotation. Once a network node has been mapped on the

‘first’ motif node of the rotation, it will not be mapped again on

one of the other nodes in the rotation, while network nodes that

are mapped on the ‘second’ motif node, still can be mapped on the

‘third’ motif node later on.

In order to realize a speedup by making use of these symmetry

characteristics, some changes were made to the motif data

structure and the algorithm. Additional information is stored in

the motif, namely for each motif node a list is kept of the motif

nodes with which it is symmetric. In the case of reflection

symmetry, for each node of the symmetry this list contains all other

nodes of the symmetry. In the case of cyclic rotations for the motif

node, that has been chosen as the ‘first’ node, this list contains all

other symmetric nodes, while the lists of the other motif nodes only

The Index-Based Subgraph Matching Algorithm (ISMA)
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contain one element, namely the ‘first’ motif node. Next to these

changes in the motif definition, a novel data structure, called

symmetry sets, was developed. For each symmetric motif node it

contains a set of all possible network nodes that have not been

mapped on it yet. These sets are used to help determining the new

set of candidate network nodes (line 21 of the ISMA algorithm). If

the motif node is symmetric, the (symmetry) sets of all nodes that

are symmetric to it (according to the symmetry structure that was

added in the motif definition), are added to the set of sets in the

determineSet procedure. As these sets only contain the network

nodes that have not been mapped yet, they make sure that all

network nodes that have been mapped on symmetric motif nodes

are eliminated when calculating the intersection.

In order to deal with symmetry (reflection or cyclic rotation) and

further speed up the calculations, the ISMA algorithm is adapted

in three ways:

N Every time it is determined which motif node will be

investigated next (line 19), it is checked whether this node is

part of a symmetry with motif nodes that have not been

investigated yet. If this is the case, the set of network nodes that

can be mapped on this motif node is added to the symmetry

sets data structure. This is realized by adding following code

after line 21.

N 21a if(mn.isSymmetric()){

N 21b symmetrySets.put(mn, set);

N 21c }

N Every time a network node is retrieved from the motif iterator

(line 9), the symmetry sets are updated. This means that, if this

network node is mapped on a symmetric motif node, this

network node is removed from the set associated with this

motif mode. In this way it will not be mapped on the other

motif nodes of the symmetry. This is realized by adding

following code after line 11.

N 11a if(CL.lastChecked().isSymmetric()){

N 11b symmetrySets.remove(CL.lastChecked(), nn);

N 11c }

N When the determineSet procedure is called, it is checked

whether the motif node (i.e. index) is symmetric to nodes that

have been investigated before. If this is the case, the

corresponding (symmetry) sets are retrieved from the symme-

try sets data structure and added to the set of sets, from which

the intersection is calculated (line 55 of the recursive ISMA

algorithm). This is realized by adding following code after line

54 in the determineSet-procedure.

N 54a forall(mn in CL.checked()){

N 54b if(mn.symmetricTo(motifnode)){

N 54c sets.add(symmetrySets.get(mn);

N 54d }

N 54e }

As mentioned before, the above adaptations narrow down the

search tree of the ISMA algorithm by making use of the

characteristics of the reflection and the cyclic rotation symmetries.

Besides this, for all other types of symmetry, every time a new

instance has been found, it will be checked whether it is symmetric

to a previously found instance. If this is the case, the instance will

not be exported (line 13). In order to check this, all motifs that are

symmetric to this motif (except for reflections and cyclic rotations)

need to be identified. For a motif with k nodes, all symmetric

motifs can be found by enumerating all permutations of the k

motif nodes, connecting them according to the motif specification,

and comparing this newly formed motif to the original one. From

this list of symmetric motifs, the reflection and cyclic rotation

symmetries are eliminated, as they are already accounted for in the

algorithm. By mapping the motif nodes of an instance to all

symmetric motifs, it can easily be checked whether the instance is

symmetric to a previous one.

In order to enumerate all permutations, a 17th century

algorithm, called ‘plain changes’ by the English bell ringers, was

used. In computer science, it is known as the Steinhaus-Johnson-

Trotter algorithm [28–30], and it has been improved by Even

[31]. It is a powerful algorithm that generates an ordering of all

permutations and is able to find all n! permutations of n elements

by swapping two adjacent elements n!{1 times. Due to the small

differences between two consecutive permutations, this algorithm

can be implemented in a constant time per permutation.

Results and Discussion

This section starts with a description of the software that

incorporates the index-based subgraph matching algorithm.

Subsequently, a number of results are presented that indicate

the strength of the algorithm in comparison with other subgraph

matching algorithms.

Software
A software implementation of the iterative ISMA algorithm is

freely available at https://sourceforge.net/projects/isma/. It is

presented in the form of a Java .jar -file (ISMA.jar) and can be

used from a command line interface as follows:

java -jar ‘‘,directory./ISMA.jar’’ -folder ‘‘,folder of input

files.’’ -linkfiles ‘‘,list of ,typename u/d filename. separated

by spaces.’’ -motif ‘‘,motif.’’ -output ‘‘,reference to output

file.’’

The first two words indicate we want to execute a .jar-file.

Subsequently, it is indicated where the .jar-file in question is

situated. The program takes four arguments: folder, linkfiles, motif

and output. The folder argument contains the directory where all

input files are situated. It avoids retyping it for every inputfile. The

linkfiles are the files that compose the network. Each linkfile

contains all links for one specific type. It is denoted in the

command by three arguments: the name of the link type (mostly

an upper case character), a character indicating whether the links

are directed (d) or undirected (u) and the name of the file. The

different linkfiles are separated by spaces. The next argument is

the motif. This is the motif specification as defined previously in

this article. The last argument determines where the output should

be stored.

Table 2. Network configurations of biological networks.

PGS network XYZ network

# nodes 1 255 # nodes 7 810

# S links 667 # X links 36 391

# G links 8 102 # Y links 40 630

# P links 3 688 # Z links 3 390

doi:10.1371/journal.pone.0061183.t002
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The input files contain all links of one type. These links are

represented by the name of the start node and the name of the end

node separated by a tab. Every line contains one link. Example

input files can be found online. The output file has one line for

every motif that has been exported. A motif is represented as

follows: Motif [,motifspecification.]: [,node 1., ,node 2.,

…].

As the above notation is quite complicated, we will explain it in

more detail by means of an example.

java -jar ‘‘ISMA/ISMA.jar’’ -folder ‘‘ISMA/input/’’

-linkfiles ‘‘A d linksAtype.txt B d linksBtype.txt C u linksCty-

pe.txt’’ -motif ‘‘ABC’’

-output ‘‘ISMA/output/results.txt’’

In this example ISMA.jar can be found in ISMA/. All input files

are present in the folder ISMA/input/. The network contains links

of three types: directed links of type A, directed links of type B and

undirected links of type C. All these links can be found in the files

linksAtype.txt, linksBtype.txt and linksCtype.txt respectively. The

motif that is searched for is ABC, which is the motif we used in the

example (see figure 3). The result of the ISMA algorithm (i.e. a list

of all motifs found) is written to the file results.txt in the directory

ISMA/output/.

In the ‘Files’ tab of this SourceForge project, all input (network)

files that were used in the experiments are available. For a

complete description of these networks, we would like to refer to

the following section.

Results
To demonstrate the strength of the ISMA algorithm, we

compared it to the naive recursive subgraph matching algorithm

(RSMA) as well as the algorithm of Ullmann [9], the VF algorithm

[10,11] and the VF2 algorithm [12,13], which are state-of-the-art

subgraph matching algorithms. We used two networks with

multiple edge types as test networks. The first is an integrated

network of physical (P, undirected), genetic (G, undirected) and

signaling (S, directed) interactions between kinases and phospha-

tases in yeast [32,33], also used in [26] (see left panel of Table 2 for

basic network characteristics). The second consists of protein-

protein interactions in yeast (X, undirected, obtained from the

BioGRID [34] database), protein-protein interactions in human

(Y, undirected, obtained from the BioGRID [34] and STRING

[35] databases), and orthology relations between human and yeast

proteins (Z, bipartite, from the InParanoid database [36]) (see right

panel of Table 2 for basic network characteristics). Experiments

were carried out on a 64-bit machine with a processor of the type

Intel(R) Core(TM) 2 Duo CPU P8600, 2.40 GHz and 4 GB of

RAM. Both the Recursive Subgraph Matching algorithm (RSMA)

and the Index-based Subgraph Matching Algorithm (ISMA) were

implemented in Java (version 1.6.0_18). The Ullmann, VF and

VF2 algorithms are all present in the VFlibrary, a (sub)graph

matching library implemented in C. These algorithms are known

for finding subgraph isomorphisms in Attributed Relational

Graphs (ARGs) fast, which is exactly what we are dealing with

here.

We first searched for a number of three-node motifs in the PGS-

network, that are useful in the clustering algorithm of [26], and

monitored the execution time for each of the algorithms. In table 3

an overview is given of these execution times (in milliseconds).

Here, it can be seen that there is a major difference between the

algorithms of the VFlibrary and the (naive) RSMA and (iterative)

ISMA algorithm. Despite the fact that they are implemented in C,

which is a language with less execution overhead, the VFlibrary

algorithms are remarkably slower. One of the decisive reasons for

this discrepancy is the way how the network is stored in memory.

For the ISMA and RSMA algorithm, the network structure has

been optimized for fast retrieval of all start nodes of a certain link

type (see Data Structures section). Looking at the RSMA and the

ISMA algorithm separately (figure 10), we see that the ISMA

algorithm indeed has lower execution times than the RSMA

algorithm.

Figure 10. Execution times. Comparison of the execution times (in ms) of the RSMA and the ISMA algorithm for finding 3-node motifs in the PGS
network.
doi:10.1371/journal.pone.0061183.g010
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Subsequently, we looked for a number of larger motifs in this

network. Table 3 shows the execution times of the algorithms

when searching for all 8-cliques and 10-cliques (i.e. complete

graphs of 8 and 10 nodes respectively). While for the ISMA

algorithm, the execution times are around 1 second, they run up to

more than two hours for the other algorithms. Here, the RSMA

algorithm even performs worse that the algorithms of the

VFlibrary. It should be noted that the difference between the

ISMA algorithm and the other algorithms is most extreme for

‘complete’ motifs (i.e. cliques). However, for sparser motifs still

significant speedups are realized, as will be shown in the

experiments with the XYZ-network.

Moreover, we looked for a motif that is not present in the PGS-

network, viz the 4-node motif PGSPGS. Results are shown in

table 3. While the execution times are relatively low, the difference

between the algorithms of the VFlibrary and the RSMA and

ISMA algorithms is not as remarkable as in the previous cases.

Next we searched in the XYZ-network for so-called interologs, 4-

node subgraphs (with motif specification XZ00ZY) consisting of

conserved protein-protein interactions between orthologous pro-

tein pairs in yeast and human [37]. Generalizing this concept, we

also searched for conserved triangles (6 nodes, motif specification

XXXZ000Z0Y00ZYY). Despite of the fact that protein-protein

interactions are undirected, in the experiments we also assumed

the links to be directed. The directions were determined by the

input files as the first and the second proteins were considered tails

and heads respectively. In this directed network, we looked for the

6-node motif AAAZ000Z0B00ZBB. Here as well, we observe

dramatic reduction in execution times for ISMA (and to a lesser

extent RSMA) compared to the VF library algorithms, as these

tend to be quite slow for larger motifs.

In conclusion, by an intelligent design of the network data

structure a remarkable speedup is realized for the RSMA and

ISMA algorithm in comparison to the VFlibrary algorithms.

Moreover, this speedup is increased even more by carefully

selecting the order in which the motif nodes are investigated (i.e.

ISMA vs. RSMA).

To quantify the relative speedup realized by the ISMA

algorithm, we defined the calculation time multiplicator (CTM) as

CTMISMA(algorithm)~
execution time(algorithm)

execution time(ISMA)

For clarity reasons, in the remainder of this article we will use

CTM(algorithm) in stead of CTMISMA(algorithm).

These calculation time multiplicators are given in table 4. It

shows that the highest speedup factors are achieved for the motifs

with an average number of occurrences. These figures show that

the larger the motif, the larger the speedup that can be realized

(XZ00ZY vs. XXXZ000Z0Y00ZYY) and that these speedups are

higher when there are more occurrences in the network

(XXXZ000Z0Y00ZYY vs. AAAZ000Z0B00ZBB). In conclusion,

2 factors contribute in reducing the calculation type: the network

data structure that has been optimized for fast retrieval of all links

of a certain type and the order in which the motif nodes are

investigated in order to reduce the search tree. While the former

one explains the difference between the VFlibrary algorithms and

the RSMA and ISMA algorithm, the latter one causes the

execution time of the ISMA algorithm to be smaller than that of

the RSMA algorithm.

As explained in the Methods section, the ISMA algorithm

achieves its speedup compared to the RSMA algorithm by

reducing the size of the search tree. We counted the number of

nodes in the search tree for both algorithms when searching for 3-

node motifs in the PGS-network (see figure 11). On average, the

search trees of the ISMA algorithm are around 100 times smaller

than the corresponding search trees of the RSMA algorithm. It

should be noted that the size of the search tree (and the execution

time) is dependent on both the motif configuration and the

network in which these motifs are searched for.

Although the development of the ISMA algorithm was

motivated by the problem of identifying composite motifs in

biological networks with multiple interaction types, or more

generally Attributed Relational Graphs, it can of course be applied

equally well to non-biological networks. We illustrate this by

Table 3. The execution times (in milliseconds) for the different subgraph matching algorithms.

motif # motifs Ullmann VF VF2 RSMA ISMA

GGG 9008 3653.5 4825.1 3421.1 181.0 76.4

SSS 81 851.0 145.6 80.4 4.6 0.9

GPS 47 1142.0 1061.9 769.4 12.8 2.3

SsS 3 815.2 140.3 76.7 0.8 0.8

SSG 103 861.4 155.7 87.0 4.9 3.8

SsG 31 838.4 145.5 83.0 1.0 1.0

GGS 312 1659.8 1167.6 866.7 106.0 2.6

GGP 418 1680.4 1201.5 898.7 108.2 7.3

ssG 112 868.2 163.6 94.5 1.9 1.9

8-clique 226 1 465 250 4 826 735 3 140 065 w2 h 954

10-clique 1 4 759 462 w2 h w2 h w2 h 1 009

PGSPGS 0 1020.1 251.3 170.8 83.9 14.2

XZ00ZY 2558 535 657.0 111 610.0 42 514.0 153.7 93.9

XXXZ000Z0Y00ZYY 4745 1 828 683.0 825 828.0 182 734.0 2354.6 270.1

AAAZ000Z0B00ZBB 840 726 732.0 166 608.0 34 053.0 595.2 123.2

It should be noted that the experiments were interrupted after 2 hours.
doi:10.1371/journal.pone.0061183.t003

The Index-Based Subgraph Matching Algorithm (ISMA)

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e61183



www.manaraa.com

searching for all 3-node cliques in a number of networks from the

SNAP database (http://snap.stanford.edu/data/index.html), where we

treated all networks as undirected. Assuming all link are of the type

X, this means the motif XXX is searched. Table 5 shows the

configurations of the networks that were used in the experiments,

together with the number of 3-node cliques that were found in

these networks. In table 6 the CTM’s are given of the ISMA

algorithm over the algorithms of the VFlibrary and over the

recursive algorithm. Moreover, the search tree reduction factors

(i.e. the number of nodes in the search tree of RSMA divided by

the number of nodes in the search tree of ISMA) are depicted.

This table shows that, similar to the experiments on biological

networks, the execution times of the algorithm presented in this

article are much lower that those of the algorithms of the

VFlibrary. Again, this can be explained by the network data

structure that allows fast retrieval of all links of a certain type. If we

take into account the large numbers of (XXX) motifs that are

present in these networks, the CTM’s are relatively small in

Table 4. The calculation time multiplicators (CTM) of the ISMA algorithm compared to other algorithms for a number of motif
configurations.

motif # motifs CTM(Ullmann) CTM(VF) CTM(VF2) CTM(RSMA)

GGG 9008 47.8 63.1 44.8 2.4

SSS 81 873.7 149.5 82.5 4.8

GPS 47 505.5 470.1 340.6 5.7

SsS 3 1000.2 172.1 94.1 1.0

SSG 103 225.0 40.7 22.7 1.3

SsG 31 831.7 144.3 82.3 1.0

GGS 312 630.6 443.6 329.3 40.3

GGP 418 231.2 165.3 123.6 14.9

ssG 112 457.4 86.2 49.8 1.0

8-clique 226 1 535.9 5 059.5 3 291.5 w7 547.2

10-clique 1 4 717.0 w7135.8 w7 135.8 w7 135.8

PGSPGS 0 72.1 17.8 12.1 5.9

XZ00ZY 2558 5704.5 1188.6 452.8 1.7

XXXZ000Z0Y00ZYY 4745 6771.3 3057.9 676.6 8.7

AAAZ000Z0B00ZBB 840 5900.3 1352.7 276.5 4.8

doi:10.1371/journal.pone.0061183.t004

Figure 11. Size search tree. Comparison of the number of nodes in the search tree of the RSMA and the ISMA algorithm for finding 3-node motifs
in the PGS network. The search tree reduction factor is defined as the size of the search tree of RSMA divided by the size of the search tree of ISMA.
doi:10.1371/journal.pone.0061183.g011
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comparison to those in biological networks. This is also confirmed

in the search tree reduction factors. Here the search tree reduction

factors are on average around 20, which is small in comparison

with the average search tree reduction factor of around 100 for the

biological networks. The reason for this is that here, when

determining the set of network nodes that can be mapped on a

motif node, all neighbors of the mapped network nodes need to be

taken into account in stead of only the neighbors according to one

specific link type.

Conclusion
Motivated by problems in the analysis of biological networks

composed of multiple directed and undirected interaction types,

we have developed a novel exact subgraph matching algorithm

that is optimized for graphs with specific link characteristics. By

carefully selecting the order in which the nodes of a network motif

are investigated and by designing appropriate data structures, a

remarkable speedup can be realized. In each iteration of the

algorithm, sets of network nodes are determined that can be

mapped on the remaining motif nodes. Always selecting the motif

node with the smallest corresponding set of network nodes leads to

less branches closer to the root of the search tree and consequently

a reduced search tree.

In order to realize an iterative version of this algorithm, a

number of data structures were developed: a checklist that keeps

track of the order in which the motif nodes are investigated, a

motif iterator to iterate over all the network nodes that can be

mapped on a motif node, and a priorityqueuemap in order to

select the best motif node to be investigated next.

Incorporating motif symmetries can lead to further increases in

computational efficiency. When present, ISMA explicitly takes

into account two specific symmetries, namely the reflections and

cyclic rotations, to further speed up the algorithm. For all other

motif symmetries, duplicate instances are eliminated once they

have been created. In future versions of ISMA, we plan to take

into account additional types of symmetries to prune the search

tree.

Applications on real network data from the biological as well as

non-biological domain, showed that the ISMA algorithm indeed

leads to speedups compared to existing exact subgraph matching

algorithms for attributed relational graphs. A comparison with a

naive recursive tree-based subgraph matching algorithm shows

that to a large extent, this speedup is indeed due to tree-pruning

strategy implemented in ISMA, with search trees in ISMA being

on average 100 times smaller than those of the recursive algorithm

in our experiments on biological networks and on average 20 times

smaller in our experiments on non-biological networks.

Taken together, we believe ISMA is an interesting new exact

subgraph matching algorithm which will be important for the

discovery and analysis of small and large network motifs in ever

growing biological networks, with potential applications in other

domains as well.
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